Difference between revisions of "Bebop"

From PaparazziUAV
Jump to navigation Jump to search
(video)
Line 137: Line 137:


== Video ==
== Video ==
Load the video_rtp_stream.xml module. Receive the video stream with e.g. avplay:
Load the [http://docs.paparazziuav.org/latest/module__video_rtp_stream.html video_rtp_stream.xml] module. Receive the video stream with e.g. avplay:
  $ avplay -loglevel quiet -max_delay 50 -fflags nobuffer rtp://192.168.42.1:5000
  $ avplay -loglevel quiet -max_delay 50 -fflags nobuffer rtp://192.168.42.1:5000


[[Category:Autopilots]]
[[Category:Autopilots]]

Revision as of 06:36, 11 March 2015

Parrot Bebop

Intro

Originally the Bebop from Parrot is an Wifi controlled flying quadrotor and is designed to be controlled with an Android or iOS device. Not any more: With a few simple clicks you can run Paparazzi on the Bebop and have full autonomous flight and much more!

Getting started

  1. Make sure you have the latest release version of Paparazzi installed.
  2. Power up your Bebop.
  3. Make a Wifi connection with your PC and the Bebop
  4. In the Paparazzi center choose "Bebop" in the airframe dropdown menu
  5. Press "Upload"
  6. Select the Bebop or ARdrone2 Flight in the session menu
  7. Press execute

Voila, you will get telemetry from the Bebop. Now it is up to you how and where to fly.

Features

Connectivity

  • Wi-Fi antennas: MIMO dual-band with 2 double-set of dipole antennas for 2.4 and 5 GHz
  • Sending power: Up to 26 dBm
  • Signal range: N/A

Structure

  • 4 Brushless Outrunner motors
  • Glass fiber reinforced (15%) ABS structure
  • High-resistance EPP outdoor hull: Clip and unclip easily to adapt to indoor and outdoor flight, protects the propellers against potential bumps, can be removed to reduce wind factor
  • Three-blade auto-block propellers in Polycarbonate with fast disassembly system
  • Anti-vibration bumpers

Camera

  • Camera with "Fisheye" lens 180° 1/2,3": 6 optical elements and 14 Mega pixels sensor
  • Video stabilization: Digital on 3-axes
  • Video definition: 1920x1080p (30fps)
  • Photo definition: 3800x3188 pixels
  • Video encoding: H264
  • Photo file format: RAW, DNG
  • Internal memory: Flash 8 GB
  • Extended memory: Micro USB

Battery

  • Lithium Polymer 1200 mAh
  • Flight time: Around 12 minutes

Processor

  • Motherboard:
    • Parrot P7 dual-core CPU Cortex 9
    • Quad core GPU
    • 8Gb flash memory
  • All fixed on a magnesium shelf that acts as electromagnetic shielding and as a radiator
  • Operating system: Linux (kernel 3.4.11 #3 SMP PREEMPT)
  • Developping: Open-source SDK

Sensors

  • 3-axes magnetometer (AKM 8963)
  • 3-axes gyroscope (MPU 6050)
  • 3-axes accelerometer (MPU 6050)
  • Optical-flow sensor (Fig.8): Vertical stabilization camera (Every 16 milliseconds, an image of the ground is taken and compared to the previous one to determine the speed of the Bebop Drone)
  • Ultrasound sensor (Analyzes the flight altitude up to 8 meters)
  • Pressure sensor (MS 5607)

Geo-location

  • GNSS (GPS + GLONASS + Galileo, Furuno GN-87F)

Dimensions

  • 28x32x3.6cm without the hull
  • 33x38x3.6cm with the hull

Weight

  • 380g without the hull
  • 400g with the hull

Pinout

GPIO

  • 73 P7MU IRQ
  • 81 GPS Power Enable
  • 85 Fan enable
  • 90 Vsync horizontal camera
  • 91 DRDY MPU6050
  • 201 On/Off button (default monitor to files running: /bin/onoffbutton)
  • 202 HOST_MODE_3V3
  • 128 (video) Slew rate??
  • 129 Vertical camera enable
  • 130 (video) Slew rate??
  • 132 Horizontal camera enable
  • 199 BLDC micro-controller reset (forces it into bootloader) ON/OFF
  • 200 US Pulse level
  • 202 USB Host mode pin

PWM

  • 6 Heating resistor for warming IMU sensors (125000ns period, 0ns duty)
  • 8 MPU6050 clock (31510ns period, 15258ns duty) Desired frequency is 32768kHz with 50% duty cycle (period=30517us). Period was set empirically to 31517 to get a 5ms data ready period. Desired frequency is slightly modified to synchronize camera and IMU
  • 9 Vertical camera clock (23ns period = 43MHz)
  • 11 Horizontal camera lock (77ns period = 13MHz)

I2C

  • I2C-0
    • FPGA
    • P7MU
    • EEPROM Unknown EEPROM for Front camera calibration (addr 0x55)
    • MT9f002 CMOS Digital Image Sensor (1/2.3 inch 14Mp, front camera) MT9f002
    • MT9v117 CMOS Digital Image Sensor (1/6 inch VGA, bottom camera) MT9v117
  • I2C-1
  • I2C-2

UART

  • ttyPA1 GPS (Furuno GN-87F)

Actuators

The Bebop has 4 Brushless motors, which are controlled by the cypress chip on I2C-1. This Cypress chip contains costum made firmware(BLDC) from Parrot, which can be automatically updated using a bootloader. The firmware from Parrot contains a very nice closed loop RPM control, which is automatically tuned inside the factory.

For more information about how to communicate with the BLDC look at Bebop/BLDC. Or take a look at the "bebop" actuator inside the airborne/boards/bebop/ folder.

Programs

  • /usr/bin/dragon-prog Main program that controls the drone
  • /bin/watchdog.sh Checks if Dragon is still running and reboots dragon
  • BLDC_Test_Bench Controls the Brushless Motor Controllers for testing and playing sounds etc.
  • bcmwl Everything with wifi
  • diagnostic Outputs sensor diagnostic
  • mk3_camera_eeprom Reads the front camera EEPROM
  • config_mt9v117 Configure the bottom camera

Cross compiler

For the Bebop you need to use a recent version GNU gcc-arm-linux-gnueabi (Ubuntu/Linaro 4.7.4-2ubuntu1) 4.7.4 provided with Ubuntu since 14.04 LTS.

If it doesn't work with your GCC/Linaro version, you can also try the Sourcery CodeBench Lite 2012.03-57 for ARM GNU/Linux from Mentor Graphics (previously codesourcery). This cross compiler is available here: Sourcery CodeBench Lite 2012.03-57 for ARM GNU/Linux. Please install this crosscompiler in the /usr/local/codesourcery/ directory of your computer, to make sure paparazzi is able to find the cross compiler.

Video

Load the video_rtp_stream.xml module. Receive the video stream with e.g. avplay:

$ avplay -loglevel quiet -max_delay 50 -fflags nobuffer rtp://192.168.42.1:5000