Difference between revisions of "RC Receivers and Radios"

From PaparazziUAV
Jump to navigation Jump to search
Line 37: Line 37:
==Orange CPPM RX==
==Orange CPPM RX==


A nice solution for e.g. Tiny and TWOG autopilot boards. Use modern DSM and your trusty PPM based autopilot board. This works as well on LPC and STM based boards. Note that for a configuration radio file on should choose an own one '''not spektrum''' regardles that the connection is over DSM the pullses are PPM out not serial DSM.
===OrangeRx R410X===
[[Image:Orange_RX_410_with_CPPM.jpg|thumb|left|Orange R410X Receiver]]
OrangeRx R410X DSMX Compatible 4Ch/6CH PWM/CPPM 2.4Ghz Receiver.
<br style="clear:both">
===OrangeRx R615===
[[Image:Orange_RX_615_with_CPPM.jpg|thumb|left|Orange R615X Receiver]]
[[Image:Orange_RX_615_with_CPPM.jpg|thumb|left|Orange R615X Receiver]]


OrangeRx R615X DSM2/DSMX Compatible 6Ch 2.4GHz Receiver with CPPM out. A nice solution for e.g. Tiny and TWOG autopilot boards. Use modern DSMX and your trusty PPM based autopilot board. This works as well on LPC and STM based boards. Note that for a configuration radio file on should choose an own one '''not spektrum''' regardles that the connection is over DSMX the pullses are PPM out not serial DSM.
If you really still must have also 6 pins on the receiver part for watever reason the other option is to use the OrangeRx R615X DSM2 6Ch 2.4GHz Receiver with CPPM out. Note that this one is a DSM2 '''not''' DSMX receiver. Ofcourse a DSMX capable transmitter is backwards compatible and can be used with this DSM2 receiver. Note that DSMX is as good as it get for RC on 2.4gHz, DSM2 is less reliable.


<br style="clear:both">
<br style="clear:both">

Revision as of 06:05, 17 November 2014

Introduction

To be able to test your airframe before it flies fully autonomous a regular RC transmitter in combination with a receiver can be used. This is essential for testing and tuning your airframe. For this to work the received steering commands have to leave the receiver. Only then with this flow of command data the autopilot when flown in manual mode can do something you tell it to. This page is to give you information of how to connect various receivers. Also how to modify receiver so they can talk to the autopilot.

Setup

Once you have physically connected your receiver we need to setup the transmitter and receiver combination correctly. This can be an complex task due to the overwhelming amount of options. To assist you in this setup quest a specific wiki page is available to help you out.

If you have a new Graupner HOTT system, the Graupner_HOTT_setup page will provide all key informations about setting up the Graupner components (Transmitter/Receiver to output a ppm sum stream).

2.4GHz Receivers

There are three ways you can connect a 2.4GHz system to your Autopilot:

  1. PPM Sum stream (should be supported on all current autopilot boards)
  2. Spektrum (with data and bind pin, also dual satelite use is possible on some boards)
  3. Futaba SBUS

If you come across the term "Satellite Receiver", it has nothing to do with satellites in earth orbit. It is just a term to describe an auxiliary receiver normally used to improve reception by plugging into the 'main' receiver.

If your receiver can not output one of the signals above, maybe you need following:

  1. Must have combined PPM pulsetrain out or use PPM Encoder board. See the Get Hardware page for links to suppliers)
  2. At least one extra channel beyond those needed to control the servos and motor. (throttle-roll-pitch-mode)

Graupner GR-12/GR-16/GR-20 HOTT

GR-12/GR-16/GR-20 are Transmitters from the Graupner HOTT Series.

  • 2.4 GHz FHSS system
  • regular software updates, good support
  • different languages (also with voice output)
  • receivers work with 3.6 V to 8.4 V (functional down to 2.5 V)
  • highly adjustable

For a detailed instructions for updates and setup look at the Graupner_HOTT_setup page.

Orange CPPM RX

A nice solution for e.g. Tiny and TWOG autopilot boards. Use modern DSM and your trusty PPM based autopilot board. This works as well on LPC and STM based boards. Note that for a configuration radio file on should choose an own one not spektrum regardles that the connection is over DSM the pullses are PPM out not serial DSM.

OrangeRx R410X

Orange R410X Receiver

OrangeRx R410X DSMX Compatible 4Ch/6CH PWM/CPPM 2.4Ghz Receiver.


OrangeRx R615

Orange R615X Receiver

If you really still must have also 6 pins on the receiver part for watever reason the other option is to use the OrangeRx R615X DSM2 6Ch 2.4GHz Receiver with CPPM out. Note that this one is a DSM2 not DSMX receiver. Ofcourse a DSMX capable transmitter is backwards compatible and can be used with this DSM2 receiver. Note that DSMX is as good as it get for RC on 2.4gHz, DSM2 is less reliable.


Orange Satellite RX

OrangeRx R100 Receiver

OrangeRx R100 Satellite Receiver R100SAT. Works well, simple to connect, do not expect long range wonders however. Although called, "Satellite Receiver" it is usable as a ful blown receiver when connected to an AP board

OrangeRx R110X Satellite Receiver R110X. Great, simple to connect, and is DSMX capable, really advised over the R100

Spektrum 9645

Spektrum 9645 satellite receiver

Spektrum 9645 satellite receiver. Works well, simple to connect. the DSMX mode is not used, it is used in the DSM2 mode, the receiver is backards compatible with that protocol.

Futaba FASST 7-channel receiver

Futaba RS 617
  • Pin 8 (upper right corner in picture) of the small IC on the right contains 5 PPM pulses and can go directly to paparazzi. Pulse 6 and 7 go directly to the servos.
  • Best is to remove the resistors of one of the channels and connect a small wire to pin 8 to get the combined 5 pulses on the robust 1/10th inch header.
  • Do not forget to use channel 3 (only failsafe channel) as mode switch with fail safe "throttle off" as mode 2.


Robbe RASST 7 & 8 channel receivers

Robbe has produced line of Futaba FASST compatible receivers that can output only PPM which results ablility to plug into autopilot without encoder.

Switch Assignment

To assign the three position switch to any other channel but channel 7 follow these steps:

  1. Set up aux2(refers to aux2 on rx not the switch on the tx. aka ch7) with its input selected as 3 pos switch.
  2. Set up this mix - Gear to Gear (Up=-100, Down=-100, Offset =0). This inhibits the gear switch.
  3. Set up another mix - Aux2 to Gear (Up=100, Down=100, Offset = 0).

Notes:

  1. Gear on a DX-7 Air is Channel 5 and AUX2 is CH7. Once again i am referring to the inputs which are labeled on the RX not what the switches are named on the TX. If your using a DX-7 heli please substitute the names for what the rx channels are named into this guide
  2. DX7 Heli the 3-pos switch is named "flight mode"
  3. DX7 Air the 3-pos switch is named "flaps"

Failsafe Setup

To set up the mode channel (3 pos switch) to default to auto2 if connection is lost between rx and tx follow these steps:

  1. Put 3 position Switch into AUTO2 Position
  2. Put in bind plug
  3. Power up
  4. REMOVE the bind plug
  5. Power up Tx while pushing bind button
  6. Wait until light becomes steady and not blinking (it may become steady right off but will then start blinking again so let it go at least 5 seconds)

Jeti Duplex 2.4 GHz Receiver Rsat 2

Jeti RSat 2
  • Outputs PPM, no soldering or PPM board required
  • Only 12 gramms
  • Full duplex technology provides safe radio link and redundant telemetry to standard paparazzi telemetry.
  • Transmitter module can be installed in any receiver.

More information can be found a the Homepage of Jeti and the MikroKopter Wiki.

DT Receiver DSN2 Rx31c 7ch SumPPM

DT Receiver Rx31c 7ch SumPPM
  • Outputs PPM,with 7 chanels for Spectrum DX8 and DX6
  • subminiature receiver with full rage. It has only 0.21 grams. Cost abut 30 Euros.
  • The solution for very small aircraft.
  • Order for the channels with Spectrum DX8 in accro mode: Throttle, Roll,Pitch, Gear, Mix, Flap,Aux2
[1]
[2]




PCM Receivers

Most of the known PCM transmitter also can be set to PPM mode. If this is set, then the regular description for PPM applies since the PCM receiver like a JR/Gaupner SMC16 Scan can output PPM perfectly.

However if setting up you transmitter to PPM out then the following applies:

  1. Must use ppm encoder board. (See Get Hardware page for suppliers)
  2. At least one extra channel beyond those needed to control the servos and motor.

PPM Receivers

To use a 26/27/35/40/41/72/ MHz receiver a few requirements are necessary

  1. At least one extra channel beyond those needed to control the servos and motor.
  2. A receiver or modified receiver which outputs a full ppm signal.

R/C Receiver Interface

All versions of the Paparazzi autopilot include a connector to interface with a standard R/C receiver for manual or semi-autonomous control during the testing and tuning phases. Two interface options exist:

  1. Tap into the PPM signal running between the RF section and the servo driver of your receiver and route it to the Paparazzi. Let the Paparazzi generate individual servo signals and connect all servos directly to the autopilot. This method requires only 3 wires to the receiver (power and PPM), is compatible with all Paparazzi autopilots, and provides 8 manual R/C channels and the potential for more autonomous channels regardless of the capability of the R/C receiver.
  2. Cut the PPM trace and route it thru the autopilot and back to the receiver, using the servo driver IC on your R/C receiver to drive the servos. This option requires 4 wires (Ground, PPM-in, PPM-out, Reset) and your receiver must have a supported servo driver IC. This allows you to use the large servo connectors on your R/C receiver and does not require any modification to your servos or ESC but does require you to cut a trace on your R/C receiver and limits the number of servos to the capacity of your receiver. Compatible with Classix and Tiny 1.1.
  3. Note that on the Classix the PPM_in pin is FOO2...

Note 1: Exact value not critical. Depending on RC Transmitter type & Manufacturer.
Note 2: Depending on Transmitter number of Channels and t,,n,, durations.
Note 3: Not critical. Depending on Synchro detection method.]]


Common demux chips

Typical used chips are the cmos 4015 and 4017.

The 4015 uses either pin 1 or pin 9 for the clock and the input is on 7 and 15. The 4017 has just one shift register and has its clock input on pin 14 and the enable on pint 13.

In most receivers you are after the clock; though some may be pulsed; in which case you need the enable. Note that the 4017 enable has inverted logic (low to be enabled) whereas the input on the 4015 can be either (typically high). If the enable pin is held low (4017) or if the input pin (4015) is held high always;e.g. connected to the ground or the Vcc - then it is fair to assume that the PPM signal is most propably on the clock input.

35/40Mhz RC Receivers

Note that there is information on modifying other receiver models at mikrokopter.de. It's in German however the pictures contain most of the information or use google translate. Shielded wire is recommended for receiver and autopilot connection, as unshielded one may cause noise in receiver.

Futaba FP-R116FB 6 Channel FM 35MHz receiver

Wiring of a Futaba R136
  • Orange wire is connected to PPM signal
  • Red wire is connected to VCC
  • Brown wire is connected to GND


Futaba R136F 6 Channel FM receiver

Wiring of a Futaba R136
  • 41 MHz
  • White wire is connected to PPM signal


Futaba R168DF 8 Channel dual FM receiver

Wiring of a Futaba R168DF
  • 35 MHz
  • PPM wire is connected to 862 receiver pin on the board. VCC and GND is on the 8/B original position.


ACT Micro-6 FM receiver

Wiring of a ACT Micro-6
  • Available in 35 or 40 MHz versions
  • White wire is connected to PPM signal
  • Datasheet (German)


ACT DSL-4top mikrokopter.de version

DSL-4top mikrokopter.de version
  • Special version for mikrokopter.de - Only available in their shop!
  • Outputs PPM directly on the channel 1 connector!
  • No soldering necessary
  • ACT Lifetime warranty
  • Sells for ~45 euro


Futaba R115F 5 Channel FM receiver

Wiring of a Futaba R115
  • Available in 35 and 40 MHz versions
  • White wire is connected to PPM signal


JETI REX 5 plus (no MPD) receiver

Wiring of a REX 5
  • Popular Czech made micro r/c receiver, available in 35 or 40 MHz versions
  • ´folded´ PCB design with parts inside, mostly inaccessable
  • Small grey wire is connected to via with PPM signal
  • Unusual connector used for testing, soldering recommended
  • shielded wire recommended, this one taken from PC parts recycling (former soundcard to m/b connector cable)
  • Datasheet (English)


other Layout of REX 5

Receiver RX-7-SYNTH IPD receiver Multiplex-rc.de

Wiring of RX-7-SYNTH IPD
  • Available in 35, 36 and 40 MHz versions
  • A compact, high-quality 7-channel single-conversion FM / PPM IPD receiver
  • Easy modification through connectors, see pictures


Protech 5FM 35 mHz Receiver

The low cost Protech '5FM' receiver makes use of an SMD version of the standard 74AHC164[3] 8 bit shift register; you are after PIN 1 of this chip. The circuit board has a testpad for just this pin at the top side of the circuit board.

Two physical versions exist; the older one [4] and a newer one pictured (fig 1). It has been distributed by protech with various ready-to-fly planes; such as the Skyraider[5].

The solder/testpad you are after the one right next the 74x164 chip its pin 1. In this image it has a jellow wire soldered to it (the yellow wire at the top left is the normal antenna connector (fig 2). Note however that the signal is not very clean (1v/div) - which may cause issues - as shown in the above image (fig 3).

This is further compunded by the relatively noisy electrical engines; which are not brushless. A ferrite coil does not seem to help enough - Papparazi and GPS loose sync often through Xbee. Replacing the engine by a brushless outrunnen resolve the issue completely.

Profi Penta 35 MHz


Graupner R16Scan

The Graupner R16Scan and SMC16Scan are available in 35,36,40,41Mhz versions and belongs to one of the most reliable traditional receivers in it's class. It's a highly selective PLL SCAN narrow-band FM superhet receiver. Has 8 servo connections. And the best thing; No crystals swap is required with this receiver since it scans for your TX transmission frequency. Modified for PPM output, it can output 9 separate channels.

To modify this receiver for use with an autopilot some soldering on tiny IC pins is needed. No additional electronic parts needed.

  1. Desolder existing resistor from IC pin, fast and carefully
  2. solder a short wire to the pin on the other side of the IC as on the picture, preferably als put some isolation over it
  3. Solder this wire to the resistor, move isolation over resistor
  4. Use a little UHU por glue to make sure nothing moves when flying in rought conditions

The PPM combined data is now available on connector 8. You still can power the receiver seperatly via + - pins if you want to. Or straight from the AP board 5v out.

72Mhz Receivers

Castle Creations Berg 4L

Wiring of a Berg 4L
  • Expect fantastic performance from these $40 USD parts but be warned that they are known to have unreliable crystal sockets and brittle antenna wire. The Berg 7 channel receiver should work equally well and is known to have a better crystal socket - note that either receiver will provide 8 channels in manual R/C mode when used with Paparazzi. Note: the rugged Berg 4 cannot be modified, only the Berg 4L and Berg 7.

To Modify a Berg4L, follow these instructions:

  1. Remove the shrink wrap. Use a good knife and be careful to not damage any of the components on the receiver. I would recommend that you cut on the sides (edge of the PCB) to be sure to avoid damaging the shielding
  2. Desolder the headers. We will not use them with tiny AP as the servos are connected directly to the AP. This is pretty easy to do when you have a hot air rework station. If you don't have one, your best bet is to cut the header off and remove the left over pins one by one with a regular iron. There is a piece of shielding material that is connected to one of the ground pins of the header. You need to remove it carefully from the header without damaging it and re-solder it to the gnd pad.
  3. You need to solder 3 wires to the receiver. Gnd, +5V and PPM. To locate the PPM signal, first locate the PIC micro controller close to the location of the headers. The PPM signal is on the corner pin closest to the corner of the receiver. Soldering a 28guage wire directly to the PIN isn't very difficult. For the power connection, use the pads that were used for the header. The outside pin is Gnd, the second pin is +5V. What I did is solder the wires on the pad going straight down, then I looped the 3 wires 360 degrees and glued them to the PCB with hot glue. This provides good strain relief.
  4. While you have the PCB in your hands, take the opportunity to remove the crystal connector and solder your crystal directly to the PCB for added reliability.
  5. I also used some hot glue to add more strain relief to the antenna
  6. Use some large shrink wrap to cover the entire receiver again


Hitec Electron 6 72MHz Reciever

This was written for MNAV from crossbow but is still usable with PPRZ.

Electron6mod.jpg


Corona Synthesized Dual-Conv Receiver 8Ch

manual

This receiver is available in 27,35,36,40,72 mhz and a Synthesized receiver, meaning you do not need to change frequency crystals.

How to modify for combined signal

  1. Cut the 8th channel PWM output pin near the PCB.
  2. Connected a pin from the Atmel (see picture) to the 8th channel PWM signal. (optionally, weaving the wire through some holes on the board.) Make sure you have a fine tip on your soldering iron and a magnifying glass strapped to your head!
  3. Glue the wire down (CA works)
  4. Be sure to glue the pin that you cut in place (previously, being soldered to the board was holding the pin in place)

It is maybe possible to reprogram the atmel with your own firmware. If you succeed in this plz add relevant info here.

That pin provides a 1V to 2V signal, it works with the PPRZ, although its a bit gittery (the slew rate is not real good).


UHF Receivers

Note that in most countries an amateur radio license is required to use 433MHz UHF.
See also Modems#HAM_.2F_CEPT_Licence.

Scherrer UHF

Scherrer UHF Rx

The Scherrer UHF is a high quality diversity radio control system. It has a PPM output and can be connected directely to Paparazzi. A ppm encoder board is not required. It has an RSSI output.

ImmersionRC EzUHF

ImmersionRC Tx

The ImmersionRC EzUHF is a high quality diversity radio control system. The recent firmwares have a PPM output on Ch. 1, but this needs to be activated through the PC configuration software with the proper firmware loaded. It connects directly to EzOSD and the TrackR2 which enables RSSI monitoring and head tracking for FPV.

Some people had issues with the exact timing, where the ROLL channel disappeared. If the radio has more than 6 channels, there may be methods to slave another channel to the roll channel (usually for the operation of dual ailerons). The ezuhf configuration file is using this method, where channel 1 is copied to channel 6. The EzUHF modules receive the PPM output stream from the radio and need to interpret it. For this reason, the ezuhf configuration file should be verified for proper functioning and you may find that channels are remapped to others with different purposes.

Search "sander style" antennas for a way to build your own cheap, high-quality antennas for these rx modules and which provide a range well beyond the horizon.

See EzUHF manual+firmware for more information.