Difference between revisions of "Installation/FromScratch"
m |
|||
Line 19: | Line 19: | ||
=== Whole lot in one === | === Whole lot in one === | ||
sudo | sudo apt-get install ocaml libcamlimages-ocaml lablgtk2-ocaml libxml-light-ocaml boa libgnomecanvas2-0 libgnomecanvas2-dev libpcre-ocaml libpcre-ocaml-dev libglade2-0 libglade2-dev make build-essential subversion git gnuplot | ||
=== Ocaml and libraries === | === Ocaml and libraries === | ||
Line 27: | Line 27: | ||
* ocaml, ocaml-camlimages-devel, ocaml-lablgtk2-devel, ocaml-xml-light-devel, ocamlnet-ocaml-devel | * ocaml, ocaml-camlimages-devel, ocaml-lablgtk2-devel, ocaml-xml-light-devel, ocamlnet-ocaml-devel | ||
$ sudo | $ sudo apt-get install ocaml libcamlimages-ocaml lablgtk2-ocaml libxml-light-ocaml-dev libocamlnet-ocaml-dev | ||
Line 35: | Line 34: | ||
The GnomeCanvas is an engine for structured graphics that offers a rich imaging model, high performance rendering, and a powerful, high level API. This widget can be used for flexible display of graphics and for creating interactive user interface elements. | The GnomeCanvas is an engine for structured graphics that offers a rich imaging model, high performance rendering, and a powerful, high level API. This widget can be used for flexible display of graphics and for creating interactive user interface elements. | ||
$ sudo | $ sudo apt-get install libgnomecanvas2-0 libgnomecanvas2-dev | ||
=== USB Library === | === USB Library === | ||
Line 41: | Line 40: | ||
The libusb project aims to create a library for use by user level applications to access USB devices regardless of OS. http://www.libusb.org | The libusb project aims to create a library for use by user level applications to access USB devices regardless of OS. http://www.libusb.org | ||
$ sudo | $ sudo apt-get install libusb-dev | ||
=== Ocaml PCRE === | === Ocaml PCRE === | ||
Line 47: | Line 46: | ||
This OCaml-library interfaces the PCRE (Perl-compatibility regular expressions) C library. it can be used for matching regular expressions which are written in Perl style. | This OCaml-library interfaces the PCRE (Perl-compatibility regular expressions) C library. it can be used for matching regular expressions which are written in Perl style. | ||
$ sudo | $ sudo apt-get install libpcre-ocaml libpcre-ocaml-dev | ||
=== Glade Library === | === Glade Library === | ||
Line 53: | Line 52: | ||
Libglade is a library that performs a similar job to the C source output routines in the GLADE user interface builder. Whereas GLADE's output routines create C source code that must be compiled, libglade builds the interface from an XML file (GLADE's save format) at runtime. This can allow modifying the user interface without recompiling. | Libglade is a library that performs a similar job to the C source output routines in the GLADE user interface builder. Whereas GLADE's output routines create C source code that must be compiled, libglade builds the interface from an XML file (GLADE's save format) at runtime. This can allow modifying the user interface without recompiling. | ||
$ sudo | $ sudo apt-get install libglade2-0 libglade2-dev | ||
=== Make === | === Make === | ||
Line 59: | Line 58: | ||
GNU Make is an utility which controls the generation of executables and other target files of a program from the program's source files. | GNU Make is an utility which controls the generation of executables and other target files of a program from the program's source files. | ||
$ sudo | $ sudo apt-get install make | ||
=== Build essential === | === Build essential === | ||
$ sudo | $ sudo apt-get install build-essential | ||
=== Git Client === | === Git Client === | ||
Line 69: | Line 68: | ||
Git is a version control system. Version control systems allow many individuals to collaborate on the Paparazzi source code. This is needed to retrieve the latest sourcecode from various packages and Paparazzi sourcecode itself. | Git is a version control system. Version control systems allow many individuals to collaborate on the Paparazzi source code. This is needed to retrieve the latest sourcecode from various packages and Paparazzi sourcecode itself. | ||
$ sudo | $ sudo apt-get install git | ||
=== GNU Plot === | === GNU Plot === | ||
Line 75: | Line 74: | ||
A command-line driven interactive plotting program. Unknow if it is used | A command-line driven interactive plotting program. Unknow if it is used | ||
$ sudo | $ sudo apt-get install gnuplot | ||
=== ImageMagick === | === ImageMagick === | ||
Line 81: | Line 80: | ||
ImageMagick is a software suite to create, edit, and compose bitmap images. It can read, convert and write images in a variety of formats. Use ImageMagick to translate, flip, mirror, rotate, scale, shear and transform images, adjust image colors, apply various special effects, or draw text, lines, polygons, ellipses and Bézier curves. Being able to modify image based map pictures is a feature that may bome in handy one time. | ImageMagick is a software suite to create, edit, and compose bitmap images. It can read, convert and write images in a variety of formats. Use ImageMagick to translate, flip, mirror, rotate, scale, shear and transform images, adjust image colors, apply various special effects, or draw text, lines, polygons, ellipses and Bézier curves. Being able to modify image based map pictures is a feature that may bome in handy one time. | ||
$ sudo | $ sudo apt-get install imagemagick | ||
=== Optional on an older OS === | === Optional on an older OS === | ||
Line 87: | Line 86: | ||
If you have an older OS distribution it never hurts to install the following... | If you have an older OS distribution it never hurts to install the following... | ||
$ sudo | $ sudo apt-get install libx11-6 libx11-dev texinfo flex bison libncurses5 libncurses5-dev libncursesw5 libncursesw5-dev zlibc | ||
== Building the Cross compiler toolchain == | == Building the Cross compiler toolchain == |
Revision as of 10:07, 21 March 2011
Intro
As with all Wiki pages, also this page is a work in progress. try to be a big help to the Paparazzi project and improve this page whenever you can. If you have a distribution different from Ubuntu which doesn't satisfy any other dependency and have instructions about compiling it, packaging it, feel free to add any reference on how to do that on this wikipage.
Goal
The goal of this page is to clarify about which version of each piece of software has to be compiled, where to find that software, patches needed to make it compile on Linux. In our case 64bit Linux. This includes compiling all paparazzi-dev, paparazzi-arm7, paparazzi-stm32 and paparazzi-bin software on your machine, running an Ubuntu Lucid Lynx or later Linux distribution or maybe even FreeBSD, or OSX.
The shortcut
Maybe you are no so interested in the details at this moment and just want to quickly install. That's fine, for that we are working on a script and you only need to run one line to get everything installed. For this to work out you do need a working internet connection, but since you can read this text, that will probably not pose a problem.
$ cd ~ && wget http://openuas.org/pub/paparazzifromscratch.sh (still not ready and a work in progress)
Paparazzi-dev packages
For Ubuntu users, you can install the following packages from standard repository. You can just copy the line(s) and paste into your terminal. But do not copy the $ sign, this symbol is just added on this page to show that it is to be pasted at a normal terminal prompt.
Whole lot in one
sudo apt-get install ocaml libcamlimages-ocaml lablgtk2-ocaml libxml-light-ocaml boa libgnomecanvas2-0 libgnomecanvas2-dev libpcre-ocaml libpcre-ocaml-dev libglade2-0 libglade2-dev make build-essential subversion git gnuplot
Ocaml and libraries
Ocaml, short for Objective Caml is the most popular variant of the Caml language. The Paparazzi GCS and some of it's tools are crafted in this language.
- ocaml, ocaml-camlimages-devel, ocaml-lablgtk2-devel, ocaml-xml-light-devel, ocamlnet-ocaml-devel
$ sudo apt-get install ocaml libcamlimages-ocaml lablgtk2-ocaml libxml-light-ocaml-dev libocamlnet-ocaml-dev
Gnome canvas Library
The GnomeCanvas is an engine for structured graphics that offers a rich imaging model, high performance rendering, and a powerful, high level API. This widget can be used for flexible display of graphics and for creating interactive user interface elements.
$ sudo apt-get install libgnomecanvas2-0 libgnomecanvas2-dev
USB Library
The libusb project aims to create a library for use by user level applications to access USB devices regardless of OS. http://www.libusb.org
$ sudo apt-get install libusb-dev
Ocaml PCRE
This OCaml-library interfaces the PCRE (Perl-compatibility regular expressions) C library. it can be used for matching regular expressions which are written in Perl style.
$ sudo apt-get install libpcre-ocaml libpcre-ocaml-dev
Glade Library
Libglade is a library that performs a similar job to the C source output routines in the GLADE user interface builder. Whereas GLADE's output routines create C source code that must be compiled, libglade builds the interface from an XML file (GLADE's save format) at runtime. This can allow modifying the user interface without recompiling.
$ sudo apt-get install libglade2-0 libglade2-dev
Make
GNU Make is an utility which controls the generation of executables and other target files of a program from the program's source files.
$ sudo apt-get install make
Build essential
$ sudo apt-get install build-essential
Git Client
Git is a version control system. Version control systems allow many individuals to collaborate on the Paparazzi source code. This is needed to retrieve the latest sourcecode from various packages and Paparazzi sourcecode itself.
$ sudo apt-get install git
GNU Plot
A command-line driven interactive plotting program. Unknow if it is used
$ sudo apt-get install gnuplot
ImageMagick
ImageMagick is a software suite to create, edit, and compose bitmap images. It can read, convert and write images in a variety of formats. Use ImageMagick to translate, flip, mirror, rotate, scale, shear and transform images, adjust image colors, apply various special effects, or draw text, lines, polygons, ellipses and Bézier curves. Being able to modify image based map pictures is a feature that may bome in handy one time.
$ sudo apt-get install imagemagick
Optional on an older OS
If you have an older OS distribution it never hurts to install the following...
$ sudo apt-get install libx11-6 libx11-dev texinfo flex bison libncurses5 libncurses5-dev libncursesw5 libncursesw5-dev zlibc
Building the Cross compiler toolchain
The goal of this part is to building an ARM and sTM32 cross-toolchain with binutils gcc newlib and gdb from source. This is needed so we can compile the code that ends up onto the autopilot board. Newlib is a C library intended for use on embedded systems. It is a conglomeration of several library parts, all under free software licenses that make them easily usable on embedded products. Enter the following on your command prompt
$ cd ~ $ nano paparazzi_from_scratch.sh
Then copy the part below (CTRL+C) and go to your terminal window again and use CTRL+SHIFT+V to paste the text into the nano editor. Afterther save the file with CTRL+X and answer Y
#!/bin/sh # ****************************************************************************** # # Goal: Get the ARM and sTM32 cross compilers, tools and libraries installed and all # working on 64Bit (Linux) computer system like they should # Version: 1.7 # Copyright: 2011 LGPL OpenUAS http://www.openuas.org/ # Date: 20110225 14:01 # Usage: $ sh ./paparazzi_from_scratch.sh 2>&1 | tee buildlog.txt # # I want to improve this script, what can I do? # # IMPR: Add STM32 support # IMPR: with automatic log filename appending date like "date +%y%j%H%M%S" # IMPR: Set MAJOR and MINOR GCC verion in make parameter automatically # IMPR: Add all commands from this wikipage also to the script, so we have a # full paparazzi from scratch in one script! # # Useful links: # http://fun-tech.se/stm32/gcc/index.php # http://only.mawhrin.net/~alexey/prg/lpc2103/toolchain/ # http://gcc.gnu.org/install/configure.html # http://wiki.ubuntuusers.de/GNU_arm-toolchain # http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gcc/ARM-Options.html#ARM-Options # http://www.hermann-uwe.de/blog/building-an-arm-cross-toolchain-with-binutils-gcc-newlib-and-gdb-from-source # http://mcuprogramming.com/forum/arm/gnu-arm-toolchain-installer/ # http://code.google.com/p/hobbycode/source/browse/trunk/gnu-arm-installer # http://www.ethernut.de/en/documents/cross-toolchain-osx.html # http://paparazzi.enac.fr/w/index.php?title=User:Roirodriguez # http://chdk.wikia.com/wiki/Gcc433 # http://chdk.wikia.com/wiki/Compiling_CHDK_under_Linux # # http://gcc.gnu.org/faq.html#multiple # https://wiki.kubuntu.org/CompilerFlags # # Older compiler http://ubuntu-virginia.ubuntuforums.org/showthread.php?t=91596 # Replaced O_CREAT for S_IRWXU in the files where you get gcc-3.4.4/gcc/collect2.c # # The eBook "Definitive guide to GCC" may come in handy # # And if all went well, a command # $ arm-elf-gcc -print-multi-lib # # Should give the following # # .; # thumb;@mthumb # interwork;@mthumb-interwork # thumb/interwork;@mthumb@mthumb-interwork # # ****************************************************************************** # In case you want to recompile, and if you do not want to re-download the files # to save time and bandwith set CLEANUPDOWNLOADS to N CLEANUPDOWNLOADS="N" TARGET=arm-elf #Or use TARGET=arm-none-eabi or arm_non_eabi the pararazzi makefile will figure it out PREFIX=$HOME/arm-elf-paparazzi # Install location of the final toolchain, change this to your liking # If you have a good reason to compile other versions, ONLY then change the version data below BINUTILS_VERSION=2.16.1 GCC_VERSION=3.4.4 NEWLIB_VERSION=1.13.0 GDB_VERSION=6.8 #Just in case for some reason you want the latest versions a just values here # and some more 3.4 in the rest of the script #TARGET=arm-elf #PREFIX=$HOME/arm-elf-latest # Install location of the final toolchain, change this to your liking #BINUTILS_VERSION=2.20.1 #GCC_VERSION=4.4.4 #NEWLIB_VERSION=1.18.0 #GDB_VERSION=7.1 # ****************************************************************************** # * No need to change anything below this line, exept improvements * # ****************************************************************************** # On multicore Processor this value can speedup the compilation if grep -q "processor" /proc/cpuinfo || grep -q "siblings" /proc/cpuinfo then SPEEDUPCOMPILATION="-j "$(($( grep "processor" /proc/cpuinfo | sort -u | wc -l ) * $( grep "siblings" /proc/cpuinfo | tail -1 | cut -d: -f2 ))) else SPEEDUPCOMPILATION="" fi # Install texinfo tool sudo apt-get install texinfo # A GCC v3.4 64Bit install to avoid issues whil compiling the crosscompiler, native compile use would be much better # Or, get debian packages from here http://www.openuas.org/pub/ubuntu/pool/universe/g/gcc-3.4/ or http://es.archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.4/ wget -N -c http://archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.4/gcc-3.4-base_3.4.6-8ubuntu2_amd64.deb wget -N -c http://archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.4/cpp-3.4_3.4.6-8ubuntu2_amd64.deb wget -N -c http://archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.4/gcc-3.4_3.4.6-8ubuntu2_amd64.deb # Must be installed in this order sudo dpkg -i gcc-3.4-base_3.4.6-8ubuntu2_amd64.deb sudo dpkg -i cpp-3.4_3.4.6-8ubuntu2_amd64.deb sudo dpkg -i gcc-3.4_3.4.6-8ubuntu2_amd64.deb if [ "${CLEANUPDOWNLOADS}" != "N" ] then rm *.deb fi BINUTILS=binutils-$BINUTILS_VERSION GCC=gcc-$GCC_VERSION NEWLIB=newlib-$NEWLIB_VERSION GDB=gdb-$GDB_VERSION mkdir $PREFIX # ** Now set the gcc and tools to be used in environment echo 'export PATH='$PREFIX'/bin:$PATH' >> ~/.bashrc source ~/.bashrc rm -drf build mkdir build # Get and compile the BinUtils wget -N -c http://ftp.gnu.org/gnu/binutils/$BINUTILS.tar.bz2 tar xfvj $BINUTILS.tar.bz2 cd build unset CFLAGS && unset LDFLAGS && unset CPPFLAGS && unset CXXFLAGS && CC=gcc-3.4 CXX=g++-3.4 ../$BINUTILS/configure -v --target=$TARGET --prefix=$PREFIX --enable-interwork --enable-multilib --enable-shared --with-system-zlib --enable-long-long --enable-nls --without-included-gettext --disable-checking --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=$TARGET make $SPEEDUPCOMPILATION CC=gcc-3.4 CXX=g++-3.4 make CC=gcc-3.4 CXX=g++-3.4 install cd .. rm -rf build/* $BINUTILS if [ "${CLEANUPDOWNLOADS}" != "N" ] then rm $BINUTILS.tar.bz2 fi # ** Get and compile GCC stuff wget -N -c ftp://ftp.gnu.org/gnu/gcc/$GCC/$GCC.tar.bz2 tar xfvj $GCC.tar.bz2 # Set correct MULTILIB options in GCC config, by patching ONTHFLYPATCHFILE='gcc_thumb_interwork_settings.patch' rm -f $ONTHFLYPATCHFILE #Just to make sure echo '--- t-arm-elf 2003-09-30 12:21:41.000000000 +0200' >> $ONTHFLYPATCHFILE echo '+++ t-arm-elf 2010-08-07 19:17:47.000000000 +0200' >> $ONTHFLYPATCHFILE echo '@@ -26,8 +26,8 @@' >> $ONTHFLYPATCHFILE echo ' # MULTILIB_DIRNAMES += 32bit 26bit' >> $ONTHFLYPATCHFILE echo ' # MULTILIB_EXCEPTIONS += *mthumb/*mapcs-26*' >> $ONTHFLYPATCHFILE echo ' # ' >> $ONTHFLYPATCHFILE echo '-# MULTILIB_OPTIONS += mno-thumb-interwork/mthumb-interwork' >> $ONTHFLYPATCHFILE echo '-# MULTILIB_DIRNAMES += normal interwork' >> $ONTHFLYPATCHFILE echo '+MULTILIB_OPTIONS += mno-thumb-interwork/mthumb-interwork' >> $ONTHFLYPATCHFILE echo '+MULTILIB_DIRNAMES += normal interwork' >> $ONTHFLYPATCHFILE echo ' # MULTILIB_EXCEPTIONS += *mapcs-26/*mthumb-interwork*' >> $ONTHFLYPATCHFILE echo ' # ' >> $ONTHFLYPATCHFILE echo ' # MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore' >> $ONTHFLYPATCHFILE patch $GCC/gcc/config/arm/t-arm-elf < $ONTHFLYPATCHFILE rm -f $ONTHFLYPATCHFILE cd build # IMPR "../$GCC/gcc/collect2.c" ajust the line in this file to prevent compiler error for older gcc to "redir_handle = open (redir, O_WRONLY | O_TRUNC | O_CREAT, S_IRWXU);" unset CFLAGS && unset LDFLAGS && unset CPPFLAGS && unset CXXFLAGS && CC=gcc-3.4 CXX=g++-3.4 ../$GCC/configure -v --enable-languages=c --prefix=$PREFIX --infodir=$PREFIX"/share/info" --mandir=$PREFIX"/share/man" --enable-interwork --enable-multilib --enable-shared --with-system-zlib --enable-long-long --enable-nls --without-included-gettext --disable-checking --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=$TARGET make $SPEEDUPCOMPILATION CC=gcc-3.4 CXX=g++-3.4 all make CC=gcc-3.4 CXX=g++-3.4 install cd .. # NOTE: We do not delete GCC temporary build yet, we need it once more later in this script if [ "${CLEANUPDOWNLOADS}" != "N" ] then rm $GCC.tar.bz2 fi # Now get and compile NewLib, note that sometimes this server is to busy serving the files, # try to get the files via an FTP client with good resume if it happens wget -N -c --waitretry=20 http://www.openuas.org/pub/newlib/$NEWLIB.tar.gz tar xfvz $NEWLIB.tar.gz cd build unset CFLAGS && unset LDFLAGS && unset CPPFLAGS && unset CXXFLAGS && CC=gcc-3.4 CXX=g++-3.4 ../$NEWLIB/configure -v --target=$TARGET --prefix=$PREFIX --enable-interwork --enable-multilib --enable-shared --with-system-zlib --enable-long-long --enable-nls --without-included-gettext --disable-checking --build=x86_64-linux-gnu --host=x86_64-linux-gnu make $SPEEDUPCOMPILATION CC=gcc-3.4 CXX=g++-3.4 make CC=gcc-3.4 CXX=g++-3.4 install cd .. rm -rf build/* $NEWLIB if [ "${CLEANUPDOWNLOADS}" != "N" ] then rm -rf $NEWLIB.tar.gz fi # GCC needs to be build again including the real newlib now cd build unset CFLAGS && unset LDFLAGS && unset CPPFLAGS && unset CXXFLAGS && CC=gcc-3.4 CXX=g++-3.4 ../$GCC/configure -v --target=$TARGET --prefix=$PREFIX --enable-interwork --enable-multilib --enable-languages="c,c++" --with-newlib --enable-shared --with-system-zlib --enable-long-long --enable-nls --without-included-gettext --build=x86_64-linux-gnu --host=x86_64-linux-gnu --infodir=$PREFIX"/share/info" --mandir=$PREFIX"/share/man" make $SPEEDUPCOMPILATION CC=gcc-3.4 CXX=g++-3.4 all-gcc make CC=gcc-3.4 CXX=g++-3.4 install-gcc cd .. rm -rf build/* $GCC rm -rf build # We need a symlink to arm-elf-gcc in /usr/bin/ the way the current paparazzi AP compile script works # We need a better solution here then symlinks, any clues...plz improve # Yes, helping with a better use of shell by using arm-elf wild-cards is appreciated PREFIXBINDIR=$PREFIX/bin OURBINDIR=/usr/bin #Remove old symlinks for x in $OURBINDIR/arm-elf*; do if [ -L $x ]; then sudo rm $x; fi ; done #Make fresh symlinks so arm tools ar found by paparazzi center sudo ln -s $PREFIXBINDIR/arm-elf-gcc $OURBINDIR/arm-elf-gcc sudo ln -s $PREFIXBINDIR/arm-elf-size $OURBINDIR/arm-elf-size sudo ln -s $PREFIXBINDIR/arm-elf-objcopy $OURBINDIR/arm-elf-objcopy sudo ln -s $PREFIXBINDIR/arm-elf-objdump $OURBINDIR/arm-elf-objdump sudo ln -s $PREFIXBINDIR/arm-elf-nm $OURBINDIR/arm-elf-nm sudo ln -s $PREFIXBINDIR/arm-elf-addr2line $OURBINDIR/arm-elf-addr2line sudo ln -s $PREFIXBINDIR/arm-elf-ar $OURBINDIR/arm-elf-ar sudo ln -s $PREFIXBINDIR/arm-elf-as $OURBINDIR/arm-elf-as sudo ln -s $PREFIXBINDIR/arm-elf-c++filt $OURBINDIR/arm-elf-c++filt sudo ln -s $PREFIXBINDIR/arm-elf-cpp $OURBINDIR/arm-elf-cpp sudo ln -s $PREFIXBINDIR/arm-elf-gcc $OURBINDIR/arm-elf-gcc sudo ln -s $PREFIXBINDIR/arm-elf-gcc-3.4.4 $OURBINDIR/arm-elf-gcc-3.4.4 sudo ln -s $PREFIXBINDIR/arm-elf-gccbug $OURBINDIR/arm-elf-gccbug sudo ln -s $PREFIXBINDIR/arm-elf-gcov $OURBINDIR/arm-elf-gcov sudo ln -s $PREFIXBINDIR/arm-elf-ld $OURBINDIR/arm-elf-ld sudo ln -s $PREFIXBINDIR/arm-elf-nm $OURBINDIR/arm-elf-nm sudo ln -s $PREFIXBINDIR/arm-elf-objcopy $OURBINDIR/arm-elf-objcopy sudo ln -s $PREFIXBINDIR/arm-elf-objdump $OURBINDIR/arm-elf-objdump sudo ln -s $PREFIXBINDIR/arm-elf-ranlib $OURBINDIR/arm-elf-ranlib sudo ln -s $PREFIXBINDIR/arm-elf-readelf $OURBINDIR/arm-elf-readelf sudo ln -s $PREFIXBINDIR/arm-elf-size $OURBINDIR/arm-elf-size sudo ln -s $PREFIXBINDIR/arm-elf-strings $OURBINDIR/arm-elf-strings sudo ln -s $PREFIXBINDIR/arm-elf-strip $OURBINDIR/arm-elf-strip # If you also a want to add the debugger, Uncomen the lines here. Configure could need parameter "--disable-werror" in some cases #wget -N -c ftp://ftp.gnu.org/gnu/gdb/$GDB.tar.bz2 #tar xfvj $GDB.tar.bz2 #cd build #../$GDB/configure --target=$TARGET --prefix=$PREFIX --enable-interwork --enable-multilib #make $SPEEDUPCOMPILATION #make install #cd .. #rm -rf build $GDB #if [ "${CLEANUPDOWNLOADS}" != "N" ] #then # rm $GDB.tar.bz2 #fi echo "Misterious as this scripts progress might have looked, everything is now done, hopefully without any issue"
Then run the script in a terminal window via:
$ sh ./paparazzi_from_scratch.sh 2>&1 | tee buildlog.txt
Rest of code needed
To install the rest we make a special directory "develop". You can give it another name ofcourse.
$ mkdir ~/develop
LPC21ISP
To get the software onto the main autopilot board a special tool is needed. We will use the great open-source LPC21ISP application. LPC21ISP is an in-circuit programming (ISP) tool for the microcontroller used on the Paparazzi autopilot boards. The lpc21isp project is hosted on sourceforge and one can find the source packages and information at http://sourceforge.net/projects/lpc21isp/
Get the SVN version via
$ mkdir -p ~/develop/lpc21isp $ cd ~/develop/lpc21isp $ svn co https://lpc21isp.svn.sourceforge.net/svnroot/lpc21isp lpc21
To compile go into the source directory and then do
$ cd lpc21 $ make -f Makefile clean all
To install
$ sudo cp lpc21isp /usr/bin/
IVY
IVY is a simple protocol and a set of open-source libraries and programs that allows applications to broadcast information through text messages, with a subscription mechanism based on regular expressions. The project can be found at: http://www2.tls.cena.fr/products/ivy/
In the paparazzi project, Ivy is used to send telemetry data to where ever you want.
NOTE: Do not confuse this IVY with the Apache Ivy project.
Ivy-python
The ivy-python package makes it possible to use the IVY libraries from within the Python programming language. The ivy-python package is architecture independent, so it can be downloaded from the Ubuntu or Debian paparazzi repository. However since this is the from scratch page we will to download it from the official source repository via
$ mkdir ~/develop $ mkdir ~/develop/ivy-python/ $ cd ~/develop/ivy-python/ $ svn co http://svn.tls.cena.fr/svn/ivy/ivy-python/trunk
Now we can build and install
$ cd ~/develop/ivy-python/trunk $ sudo ./setup.py install
Ivy-c
To be able to use IVY-c, the libraries need to be installed. Source packages of ivy-c can be downloaded via:
$ mkdir ~/develop/ivy-c $ cd ~/develop/ivy-c $ svn co http://svn.tls.cena.fr/svn/ivy/ivy-c/trunk
To compile
$ cd ~/develop/ivy-c/trunk/src $ make
It is possible you get errors of the test module when compiling, just ignore the messages, it is not important for the Paparazzi project. Contact the IVY team to help them also to resolve also the testing makefile issue.
Now install the compiled libraries
$ sudo make install
Ivy-OCAML
The Ivy-ocaml is a Library that make it possible to use Ivy via de Ocaml language.
$ mkdir ~/develop $ mkdir ~/develop/ivy-ocaml $ cd ~/develop/ivy-ocaml/ $ svn co http://svn.tls.cena.fr/svn/ivy/ivy-ocaml/trunk
NOTE: If the above SVN repository does not work due ti API incompatibilities get the ivy-ocaml source via
$ wget http://paparazzi.enac.fr/ubuntu/dists/lucid/main/binary-i386/ivy-ocaml_1.1-10.tar.gz
Now we need to compile the source via
$ cd ~/develop/ivy-ocaml/trunk $ make
Compilation that doesn't work on 64bit systems, if you just run 'make'
/usr/bin/ld: civyloop.o: relocation R_X86_64_32 against `timer_cb' can not be used when making a shared object; recompile with -fPIC
That's solved by just editing the Makefile. Change the line containing
.c.o: $(CC) -Wall -c $(OCAMLINC) $(GLIBINC) $<
to
.c.o: $(CC) -Wall -c -fPIC $(OCAMLINC) $(GLIBINC) $<
TODO:
File a defect to the ivy-ocam development team: A proper patch for the original sources would be one that checks if the system is a 64bit system, and if so set FPIC env variable. The following code at the beginning of the Makefile needs to be added just as it is done in the ivy-c Makefile
PERHAPS64:= $(shell uname -m | perl -ne "print /64/? '64' : ;") ifeq ($(PERHAPS64), "64") FPIC= else FPIC=-fPIC endif
And then let the rule to compile all .c and .o files be like the following:
.c.o: $(CC) -Wall -c $(FPIC) $(OCAMLINC) $(GLIBINC) $<
Paparazzi Main sourcecode
To run the Ground control station and to be able to create airborne code for the Autopilot board and more one needs to get the Paparazzi source via
$ svn co svn://svn.savannah.nongnu.org/paparazzi/paparazzi3/trunk paparazzi3
Compilation
If you enter the sources directory and simply run make you will get the following error in an amd64 system:
cd sw/ground_segment/multimon; make PAPARAZZI_SRC=/home/roi/Codigo/paparazzi-dev/lenny_versions/paparazzi/temp PAPARAZZI_HOME=/home/roi/Codigo/paparazzi-dev/lenny_versions/paparazzi/temp CC hdlc.c hdlc.c:1: error: CPU you selected does not support x86-64 instruction set
This is because the code in sw/ground_segment/multimon/filter-i386.h which contains optimizations for some functions gets included and it doesn't work on amd64. filter.h says that filter-i386.h gets included if:
#ifdef ARCH_I386 #include "filter-i386.h" #endif /* ARCH_I386 */
If we take a look to the Makefile (sw/ground_segment/multimon/Makefile):
CFLAGS =-Wall -Wstrict-prototypes -I/usr/X11R6/include -I `ocamlc -where` ifeq ($(DEBUG),y) CFLAGS +=-g -O -march=i486 -falign-loops=2 -falign-jumps=2 \ -falign-functions=2 -DARCH_I386 else CFLAGS +=-O3 -march=i486 -falign-loops=2 -falign-jumps=2 \ -falign-functions=2 -DARCH_I386 endif
We'll have to change it to not define ARCH_I386, not optimize for i486 and add -fPIC. So we need to leave the above lines like:
CFLAGS =-Wall -fPIC -Wstrict-prototypes -I/usr/X11R6/include -I `ocamlc -where` ifeq ($(DEBUG),y) CFLAGS +=-g -O -falign-loops=2 -falign-jumps=2 \ -falign-functions=2 else CFLAGS +=-O3 -falign-loops=2 -falign-jumps=2 \ -falign-functions=2 endif
Note that leaving the sources like this won't apply the optimizations if now you take the modified source and compile it in a 32bit system...
Now it will compile. run paparazzi and test it with a simulation via
$ ./paparazzi
NOTES: See also the main installation page
TIP: If you get the File "pprz.mli", line 149, characters 78-89: Error: Unbound type constructor Ivy.binding ...this happens when IVY libraries are not yet installed. How to do this, read the part on installing IVY on this page
Set the UDev rules
To be able to access the Hardware attached to your PC later on, rules must be set in your OS. By setting the correct rules a regular user can access USB and other devices, otherwise restricted for only the root user.
Now in a terminal
$ sudo nano /etc/udev/rules.d/91-paparazzi.rules
then select and copy (CTRL+V) the text below:
ACTION!="add|change", GOTO="paparazzi_rules_end" SUBSYSTEM!="usb", GOTO="paparazzi_rules_end" ENV{DEVTYPE}!="usb_device", GOTO="paparazzi_rules_end" #SUBSYSTEMS=="usb", ATTRS{serial}=="*_fbw", NAME="test_fbw", SYMLINK+="paparazzi/%s{serial}", MODE="0666" # MaxStream xbee pro box SUBSYSTEMS=="usb", ATTRS{product}=="MaxStream PKG-U", KERNEL=="ttyUSB*", SYMLINK+="paparazzi/xbee", GROUP="plugdev" # bare FTDI chip without EEPROM SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", KERNEL=="ttyUSB*", SYMLINK+="paparazzi/serial", GROUP="plugdev" # all (fake VID 0x7070) LPCUSB devices (access through libusb) SUBSYSTEMS=="usb", ATTRS{idVendor}=="7070", GROUP="plugdev" # FTDI 2232 parallel converter / Amontec JTAG-Tiny (access through libftdi) SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="cff8", GROUP="plugdev" # FTDI 2232 based jtag for Lisa/L SUBSYSTEM=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", MODE="0666", GROUP="plugdev" # make joysticks/gamepads readable on event interface (writeable for force feedback), see input_event.sh KERNEL=="event*", IMPORT{program}="input_event.sh %p", NAME="input/%k", GROUP="plugdev", MODE="0640" ENV{FF_DEVICE}=="1", MODE="0660" #needed for lisa usb upload SUBSYSTEM=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", MODE="0666", GROUP="plugdev" # FTDI with uBlox direct on USB SUBSYSTEMS=="usb", ATTRS{idVendor}=="1546", ATTRS{idProduct}=="01a5", KERNEL=="ttyACM*", SYMLINK+="paparazzi/acm", GROUP="plugdev" LABEL="paparazzi_rules_end"
Past the text in the terminal window via CTRL+SHIFT+V and save the file via CTRL+X. Test via
$ udevadm info -q all -n /dev/paparazzi/serial
If you want to learn more about what UDEV is, there is a very informative page about udev here
The depriciated -mapcs-32 option
The option "-mapcs-32" is only available with very old tool chain versions e.g. GCC-3.3.x. More recent tool chains will either require "-mabi=apcs-gnu" (non-EABI-compliant) or "-mabi=aapcs-linux" (EABI-compliant). To have an overview of all flags go here
http://ecos.sourceware.org/docs-1.3.1/ref/gnupro-ref/arm/ARM_COMBO_ch01.html
By changing -mapcs-32 with -Wa,-mapcs-32 compilation will work with more recent compilers and we have backward compatibility with the old flag for older compilers. The option -Wa,-mapcs-32 is doing the following: -Wa,option : Pass option as an option to the assembler. If option contains commas, it is split into multiple options at the commas.
The -mapcs-32 option generates code for a processor running with a 32-bit program counter and conforming to the function calling standards for the APCS 32-bit option. If interested in depth what APCS is read the following: http://www.openuas.org/site/APCS.txt
The gcc flag -mapcs-32 was deprecated since gcc-3.4.0 and finally removed in gcc-4.0.0 which unconditionally generates 32bit ARM code. You should not need to pass this flag to the assembler either but it might not hurt for backwards compatibility with older compilers, so it's best to leave it in with the -Wa, option metho
Useful links
https://github.com/esden/summon-arm-toolchain
https://github.com/paparazzi/paparazzi-portability-support
http://svn.savannah.gnu.org/svn/paparazzi/paparazzi3/trunk/conf/Makefile.stm32
http://wiki.ubuntuusers.de/GNU_arm-toolchain
http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gcc/ARM-Options.html#ARM-Options
http://mcuprogramming.com/forum/arm/gnu-arm-toolchain-installer/
http://code.google.com/p/hobbycode/source/browse/trunk/gnu-arm-installer
http://www.ethernut.de/en/documents/cross-toolchain-osx.html
http://paparazzi.enac.fr/w/index.php?title=User:Roirodriguez