Difference between revisions of "Tiny v2"

From PaparazziUAV
Jump to navigation Jump to search
Line 137: Line 137:
|2|| +3.3V||PWR||3.3V Rail from Tiny||style="background:red; color:white"|Red
|2|| +3.3V||PWR||3.3V Rail from Tiny||style="background:red; color:white"|Red
|-
|-
|3||ADC_2||IN||Horizontal IR Sensor signal axis 2 (Analog to Digital Converter Input #2)||style="background:Grey; color:white"|Grey
|3||IRH_2||IN||Horizontal IR Sensor signal axis 2 (Analog to Digital Converter Input #2)||style="background:Grey; color:white"|Grey
|-
|-
|4||ADC_1||IN||Horizontal IR Sensor signal axis 1 (Analog to Digital Converter Input #1)||style="background:Sienna; color:white"|Braun
|4||IRH_1||IN||Horizontal IR Sensor signal axis 1 (Analog to Digital Converter Input #1)||style="background:Sienna; color:white"|Braun
|}
|}



Revision as of 09:22, 11 December 2007

Features

  • Single LPC2148 MCU
  • 8 Analog input channels 0V - 3.3V (2 channels with optional on-board 5v -> 3.3v resistor bridge)
  • 1 3.3V TTL UART (5V tolerant)
  • 8 PWM outputs
  • 1 R/C receiver PPM frame input
  • 1 SPI bus
  • 1 I2C bus
  • 1 USB (client)
  • Integrated GPS receiver and patch antenna (4Hz update)
  • 5V/2.5A switching power supply & 3.3V/1A linear regulator
  • 3 status LEDs with attached test point
  • ?? grams
  • 70.8 x 40mm (smaller then a banking card)
  • 2 layers PCB design, 0603 components

The Tiny v2.1 autopilot uses a single Philips LPC2148 ARM7 based microcontroller. The ARM7 is a low-power 32-bit RISC processor core and the Philips LPC2148 has 512KB on-chip Flash ROM, 40KB RAM and can be clocked at 60MHz.

Although critical control code such as the R/C interface and servo output are well segregated in Paparazzi software and well protected from interference from flaws in the stability/navigation/comm/payload code, great care must be taken when experimenting with new software as some errors can cause a the processor to halt or stall for extended periods causing total loss of control.

Architecture

Pinout

Pins Name and Type are specified with respect to the Autopilot Board

Tiny v2-1 pinout.png


SERIAL
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5V PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 DTR
5 CTS
6 RTS
7 RXD1 IN UART1 Serial Input (3.3V level, 5V Tolerant) Green
8 TXD1 OUT UART1 Serial Output (3.3V level) Blue


SPI
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +3.3V PWR 3.3V Rail from Tiny Red
3 SSEL IN SSP Slave Select. Selects the SSP interface as a slave (SSEL1) Braun
4 MOSI I/O SPI1 Master Out Slave In. Data output from master or data input to slave Grey
5 MISO I/O SPI1 Master In Slave Out. Data input to master or data output from slave Green
6 DRDY IN External interrupt 0 input (EINT0) Purple
7 SCK I/O SPI0 Serial clock. Clock output from master or input to slave Yellow


PPM
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5v PWR 5V Rail from Tiny to R/C receiver supply Orange
3 PPM_IN IN PPM Stream from R/C Receiver (5V tolerant) White
4 SERV_RST OUT external PPM decoder reset (Note 1)
5 SERV_CLK OUT external PPM decoder clock (Note 1)

Note 1 : Used only if servos are connected to the R/C receiver


USB
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +3.3V PWR 3.3V Rail from Tiny Red
3 USB+ I/O USB bidirectional D+ line Green
4 USB- I/O USB bidirectional D- line White
5 VBUS IN Indicates the presence of USB bus power (P0.23) (5V level) Orange
6 BUTTON IN External Button (+3.3v pullup)
7 LED3 OUT GPIO (LED #3 command)
8 ADC_7 IN Analog to Digital Converter Input #7


IRV
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +3.3V PWR 3.3V Rail from Tiny Red
3 IRV IN Vertical IR Sensor signal (Analog to Digital Converter Input #0) Purple


IRH
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +3.3V PWR 3.3V Rail from Tiny Red
3 IRH_2 IN Horizontal IR Sensor signal axis 2 (Analog to Digital Converter Input #2) Grey
4 IRH_1 IN Horizontal IR Sensor signal axis 1 (Analog to Digital Converter Input #1) Braun


ADC1
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5v PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 ADC_4 IN Analog to Digital Converter Input #4
5 ADC_3 IN Analog to Digital Converter Input #3


ADC2
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5v PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 ADC_6 IN Analog to Digital Converter Input #6 (Maximum input level can be selected with R12 & R14 values)
5 ADC_5 IN Analog to Digital Converter Input #5 (Maximum input level can be selected with R13 & R15 values)


DOWNLOAD
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5v PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 BOOT IN In-Circuit Serial Programming (ISP) enable (P0.14, +3.3v pullup) (Note 2)
5 GPS_RESET IN leave unconnected, hold this pin low only for bootloader programming (Note 3)
6 TXD0 OUT UART0 Serial Output (shared with GPS receiver) Blue
7 RXD0 IN UART0 Serial Input (shared with GPS receiver) Green

Note 2 : Holding this pin low for at least 3mS after a RESET (or power up) instructs the controller to enter programming mode.

Note 3 : MAXIMUM VOLTAGE ON THIS PIN : 1.95V !!!


I2C
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5V PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 SDA I/O I2C bus Serial DAta
5 SCL I/O I2C bus Serial CLock


CAM
Pin # Name Type Description Suggested Color
1 GND PWR common ground Black
2 +5V PWR 5V Rail from Tiny Orange
3 +3.3V PWR 3.3V Rail from Tiny Red
4 CAM_SW OUT video source/payload selection signal
5 SRV_1 OUT Servo PWM signal #1
6 SRV_5 OUT Servo PWM signal #5
7 AUX PWR video/payload switchable 5V power suply

Schematic

PCB

Assembly