Difference between revisions of "Modems"
(→Pinout) |
(→Pinout) |
||
Line 39: | Line 39: | ||
|2 | |2 | ||
|DOUT | |DOUT | ||
| | |Tx output --> Autopilot Rx | ||
|(Green) | |(Green) | ||
|- | |- | ||
|3 | |3 | ||
|DIN | |DIN | ||
| | |Rx input --> Autopilot Tx | ||
|(Blue) | |(Blue) | ||
|- | |- |
Revision as of 01:47, 16 October 2007
The Paparazzi autopilot features a 5V tolerant 3V TTL serial port to interface with any common radio modem. The bidirectional link provides real-time telemetry and in-flight tuning and navigation commands. The system is also capable overlaying the appropriate protocols to communicate thru non-transparent devices such as the Coronis Wavecard or Maxstream API-enabled products, allowing for hardware addressing for multiple aircraft or future enhancements such as data-relaying, inter-aircraft communication, RSSI signal monitoring and automatic in-flight modem power adjustment. Below is a list of some of the common modems used with Paparazzi, for details on configuring your modem see the Airframe Configuration page.
Maxstream XBee Pro
These relatively cheap and light modules implement the ZigBee/IEEE 802.15.4 norm. They allow up to 1 mile range(Paparazzi tested to 2.5km). The main drawback of using such 2.4Ghz modules for datalink is that it will interfere with the 2.4Ghz analog video transmitters and a inevitable decrease in range when in proximity to any wifi devices.
|
Pinout
1 | +3.3v | (Red) | |
2 | DOUT | Tx output --> Autopilot Rx | (Green) |
3 | DIN | Rx input --> Autopilot Tx | (Blue) |
10 | GND | (Black) |
Documentation
Maxstream 9XTend
These larger units have been tested on the 900Mhz band, but are also available in 2.4Ghz. They are a bit on the heavy side(~20grams) but give good performance at range. They have adjustable power settings from 100mW to 1W. Testing has shown range up to 2 miles with 100mW.
|
Pinout
9XTend 20-pin Header | Name | Tiny Serial-1 Header | Notes |
1 | GND | 1 (GND) | Ground |
2 | VCC | N/A (requires 5V) | 5V power (150mA - 730mA Supplied from servo bus or other 5V source) |
5 | RX | 8 (TX) | 3-5V TTL data input - connect to Tiny TX |
6 | TX | 7 (RX) | 5V TTL data output - connect to Tiny RX |
7 | Shutdown | N/A (requires 5V) | Permanently connect this pin to the 5V bus for normal operation |
Notes:
- 9XTend can run on voltages as low as 2.8V but users are strongly advised against connecting any modem (especially high power models) to the sensitive 3.3V bus supplying the autopilot processor and sensors.
Documentation
Aerocomm
Aerocomm's API mode is not yet implemented. Therefore they are used in transparent mode. Users are reporting these modems cause more interference with GPS reception then the Maxstream modem.
AC4868-250
|
||
AC4790-200
|
||
AC4790-1000
|
Pinout
AC4868 20-pin Header | Name | Color | Tiny Serial-1 | Notes |
2 | Tx | green | 7 | (Note 1) |
3 | Rx | blue | 8 | (Note 1) |
5 | GND | black | 1 | - |
10+11 | VCC | red | 2 | +3.3v |
17 | C/D | white | 3 | Low = Command High = Data |
Note 1 : names are specified with respect to the AEROCOMM module
Documentation
- AC4790 product page
- AC4790 Datasheet
- AC4790 Manual
- AC4848 product page
- AC4868 Datasheet
- AC4868 user manual
Radiotronix
These Radiotronix modems are used in transparent mode. Use the WI232EUR Evaluation Software for configuring the modems for the set speed. Connect /CMD and CTS for programming. The DTS version for the US market might cause severe interference with GPS reception, it is not recommended.
WI232EUR
|
||||||||||||||||||||||||||||||
Pinout
Note 1 : names are specified with respect to the Radiotronix module Note 2 : connect to RTS to program device with Evaluation software Note 3 : connect to CTS to program device with Evaluation software DocumentationCoronis WaveCardThese relatively inexpensive and light modules implement a Coronis proprietary protocol. Low power consumption - high latency - I would not recommend these modules mostly because of the low quality of the distribution and support. The documentation is rather poor and not easily available.
DocumentationVideo Transmitter TelemetryIn order for the UAV to transmit video from an onboard camera, a video transmitter is needed. The paparazzi AP sends all telemetry data down with the video on the audio channel portion of the transmitter. This means that the transmitter must have an audio channel. These vary in power, and thus range, and run normally on 2.4Ghz. Small UAVs can get about 600m of range from the 50mW version, and extended range can be achieved using units up to 1W. Weight for these units varies from a couple grams to about 30 for the 1W with shielding. Please check for your countries regulations on 2.4Ghz transmission, as each is different.
AntennasHere are some examples of lightweight and efficient 868MHz antennas developped by the RF laboratory at ENAC.
|